LTC1799CS5 [Linear Systems]

可编程晶振芯片;
LTC1799CS5
型号: LTC1799CS5
厂家: Linear Systems    Linear Systems
描述:

可编程晶振芯片

文件: 总12页 (文件大小:235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1799  
LTC1799  
1kHz to 33MHz  
Resistor Set SOT-23 Oscillator  
U
FEATURES  
DESCRIPTIO  
One External Resistor Sets the Frequency  
The LTC®1799 is a precision oscillator that is easy to use  
and occupies very little PC board space. The oscillator  
frequency is programmed by a single external resistor  
(RSET). TheLTC1799hasbeendesignedforhighaccuracy  
operation (1.5% frequency error) without the need for  
external trim components.  
Fast Start-Up Time: <1ms  
1kHz to 33MHz Frequency Range  
Low Profile (1mm) ThinSOTTM Package  
Frequency Error 1.5% 5kHz to 20MHz  
(TA = 25°C)  
Frequency Error 2% 5kHz to 20MHz  
The LTC1799 operates with a single 2.7V to 5.5V power  
supply and provides a rail-to-rail, 50% duty cycle square  
waveoutput.TheCMOSoutputdriverensuresfastrise/fall  
times and rail-to-rail switching. The frequency-setting  
resistor can vary from 3k to 1M to select a master  
oscillator frequency between 100kHz and 33MHz (5V  
supply). Thethree-stateDIVinputdetermineswhetherthe  
master clock is divided by 1, 10 or 100 before driving the  
output, providing three frequency ranges spanning 1kHz  
to33MHz(5Vsupply).TheLTC1799featuresaproprietary  
feedback loop that linearizes the relationship between  
RSET and frequency, eliminating the need for tables to  
calculate frequency. The oscillator can be easily pro-  
grammed using the simple formula outlined below:  
(TA = 0°C to 70°C)  
±40ppm/°C Temperature Stability  
0.05%/V Supply Stability  
50% ±1% Duty Cycle 1kHz to 2MHz  
50% ±5% Duty Cycle 2MHz to 20MHz  
1mA Typical Supply Current  
100CMOS Output Driver  
Operates from a USingle 2.7V to 5.5V Supply  
APPLICATIO S  
Low Cost Precision Oscillator  
Charge Pump Driver  
Switching Power Supply Clock Reference  
Clocking Switched Capacitor Filters  
100,DIV Pin = V+  
Fixed Crystal Oscillator Replacement  
10k  
NRSET  
Ceramic Oscillator Replacement  
fOSC = 10MHz•  
, N = 10, DIV Pin = Open  
1, DIV Pin = GND  
Small Footprint Replacement for Econ Oscillators  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
U
Typical Distribution of Frequency Error,  
TYPICAL APPLICATIO  
TA = 25°C (5kHz fOSC 20MHz, V+ = 5V)  
25  
20  
15  
10  
5
Basic Connection  
1kHz f  
5
33MHz  
OSC  
5V  
5V  
1
2
3
+
V
OUT  
LTC1799  
0.1µF  
3k R  
1M  
SET  
GND  
SET  
÷100  
÷10  
4
DIV  
OPEN  
÷1  
1799 TA01  
0
SOT-23 Actual Size  
–1.25 –0.75  
–0.25 0 0.25  
0.75  
1.25  
FREQUENCY ERROR (%)  
1799 TA02  
1
LTC1799  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
Supply Voltage (V+) to GND ........................0.3V to 6V  
DIV to GND .................................... 0.3V to (V+ + 0.3V)  
SET to GND ................................... 0.3V to (V+ + 0.3V)  
Operating Temperature Range  
ORDER PART NUMBER  
TOP VIEW  
LTC1799CS5  
LTC1799IS5  
+
V
1
2
3
5
4
OUT  
DIV  
GND  
SET  
LTC1799C ............................................... 0°C to 70°C  
LTC1799I............................................ 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
S5 PART MARKING  
S5 PACKAGE  
5-LEAD PLASTIC SOT-23  
LTND  
LTNE  
TJMAX = 125°C, θJA = 256°C/W  
Consult LTC Marketing for parts specified with wider operating temperature  
ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 2.7V to 5.5V, RL=5k, CL = 5pF, unless otherwise noted.  
All voltages are with respect to GND.  
SYMBOL PARAMETER  
f Frequency Accuracy  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V = 5V  
5kHz f 20MHz  
±0.5  
±1.5  
±2  
±2.5  
%
%
%
%
%
5kHz f 20MHz, LTC1799C  
5kHz f 20MHz, LTC1799I  
1kHz f 5kHz  
(Notes 2, 3)  
±2.5  
±2.5  
20MHz f 33MHz  
+
V = 3V  
5kHz f 10MHz  
±0.5  
±1.5  
±2  
±2.5  
%
%
%
%
%
5kHz f 10MHz, LTC1799C  
5kHz f 10MHz, LTC1799I  
1kHz f 5kHz  
±2.5  
±2.5  
10MHz f 20MHz  
+
R
Frequency-Setting Resistor Range  
Maximum Frequency  
f < 1.5%  
V = 5V  
5
10  
200  
200  
kΩ  
kΩ  
SET  
MAX  
MIN  
+
V = 3V  
+
f
f < 2.5%, Pin 4= 0V  
V = 5V  
33  
20  
MHz  
MHz  
+
V = 3V  
+
f
Minimum Frequency  
f < 2.5%, Pin 4= V  
1
kHz  
%/°C  
%/V  
f/T  
f/V  
Freq Drift Over Temp (Note 3)  
Freq Drift Over Supply (Note 3)  
R
= 31.6k  
±0.004  
0.05  
SET  
+
V = 3V to 5V, R  
= 31.6k  
0.1  
SET  
+
Timing Jitter  
(Note 4)  
Pin 4 = V  
0.06  
0.13  
0.4  
%
%
%
Pin 4 = Open  
Pin 4 = 0V  
Long-Term Stability of Output Frequency  
Duty Cycle (Note 7)  
300  
ppm/kHr  
+
Pin 4 = V or Open (DIV Either by 100 or 10)  
49  
45  
50  
50  
51  
55  
%
%
Pin 4 = 0V (DIV by 1), R  
= 5k to 200k  
SET  
+
V
Operating Supply Range  
Power Supply Current  
2.7  
5.5  
1.1  
V
+
+
I
R
R
= 200k, Pin 4 = V , R = ∞  
V = 5V  
0.7  
mA  
S
SET  
SET  
L
+
= 10k, Pin 4 = 0V, R = ∞  
V = 5V  
2.4  
2
mA  
mA  
L
+
V = 3V  
+
V
V
High Level DIV Input Voltage  
Low Level DIV Input Voltage  
DIV Input Current (Note 5)  
V – 0.4  
V
V
IH  
IL  
0.5  
8
+
+
I
Pin 4 = V  
V = 5V  
5
–5  
µA  
µA  
DIV  
+
Pin 4 = 0V  
V = 5V  
–8  
2
LTC1799  
ELECTRICAL CHARACTERISTICS  
All voltages are with respect to GND.  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 2.7V to 5.5V, RL=5k, CL = 5pF, Pin 4 = V+ unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
4.8  
4.5  
TYP  
4.95  
4.8  
MAX  
UNITS  
+
V
V
High Level Output Voltage (Note 5)  
Low Level Output Voltage (Note 5)  
V = 5V  
I
I
= 1mA  
= 4mA  
V
V
OH  
OH  
OH  
+
V = 3V  
I
I
= 1mA  
= 4mA  
2.7  
2.2  
2.9  
2.6  
V
V
OH  
OH  
+
V = 5V  
I
I
= 1mA  
= 4mA  
0.05  
0.2  
0.15  
0.4  
V
V
OL  
OL  
OL  
+
V = 3V  
I
I
= 1mA  
= 4mA  
+
0.1  
0.4  
0.3  
0.7  
V
V
OL  
OL  
+
t
t
OUT Rise Time  
(Note 6)  
V = 5V  
Pin 4 = V or Floating, R = ∞  
Pin 4 = 0V, R = ∞  
14  
7
ns  
ns  
r
f
L
L
+
+
V = 3V  
Pin 4 = V or Floating, R = ∞  
19  
11  
ns  
ns  
L
Pin 4 = 0V, R = ∞  
L
+
+
OUT Fall Time  
(Note 6)  
V = 5V  
Pin 4 = V or Floating, R = ∞  
13  
6
ns  
ns  
L
Pin 4 = 0V, R = ∞  
L
+
+
V = 3V  
Pin 4 = V or Floating, R = ∞  
19  
10  
ns  
ns  
L
Pin 4 = 0V, R = ∞  
L
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 2: Frequencies near 100kHz and 1MHz may be generated using two  
Note 4: Jitter is the ratio of the peak-to-peak distribution of the period to  
the mean of the period. This specification is based on characterization and  
is not 100% tested.  
different values of R  
section). For these frequencies, the error is specified under the following  
(see the Table 1 in the Applications Information  
Note 5: To conform with the Logic IC Standard convention, current out of  
a pin is arbitrarily given as a negative value.  
SET  
assumption: 10k < R 100k. The frequency accuracy for f  
is guaranteed by design and test correlation.  
= 20MHz  
SET  
OSC  
Note 6: Output rise and fall times are measured between the 10% and  
90% power supply levels. These specifications are based on  
characterization.  
Note 3: Frequency accuracy is defined as the deviation from the  
equation.  
f
OSC  
Note 7: Guaranteed by 5V test.  
3
LTC1799  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Frequency Variation  
vs RSET  
Frequency Variation  
Over Temperature  
4
3
1.00  
0.75  
0.50  
0.25  
T
= 25°C  
R
= 31.6k  
A
SET  
GUARANTEED LIMITS APPLY  
OVER 5k TO 200k RANGE  
÷1 OR ÷10 OR ÷100  
2
TYPICAL  
HIGH  
TYPICAL  
HIGH  
1
0
0
–0.25  
–0.50  
–0.75  
–1.00  
TYPICAL  
LOW  
–1  
–2  
–3  
–4  
TYPICAL  
LOW  
1
10  
100  
1000  
40  
TEMPERATURE (°C)  
80  
–40 –20  
0
20  
60  
R
(k)  
SET  
1799 G01  
1799 G02  
Supply Current  
vs Output Frequency  
Peak-to-Peak Jitter vs Frequency  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
= 5pF  
= 1M  
A
L
L
C
R
÷1  
÷1 (5V)  
÷10 (5V)  
÷100 (5V)  
÷10  
÷100  
÷100 (3V) ÷10 (3V) ÷1 (3V)  
1k  
10k  
100k  
1M  
10M  
(Hz)  
100M  
1k  
10k  
100k  
1M  
10M  
(Hz)  
100M  
OUTPUT FREQUENCY, f  
OUTPUT FREQUENCY, f  
OUT  
OUT  
1799 G03  
1799 G04  
Output Resistance  
vs Supply Voltage  
LTC1799 Output Operating at  
20MHz, VS = 5V  
LTC1799 Output Operating at  
10MHz, VS = 3V  
140  
120  
100  
80  
V+ = 5V, RSET = 5k, CL = 10pF  
V+ = 3V, RSET = 10k, CL = 10pF  
T
A
= 25°C  
OUTPUT SOURCING CURRENT  
1V/DIV  
1V/DIV  
60  
1799 G06  
1799 G07  
12.5ns/DIV  
25ns/DIV  
OUTPUT SINKING CURRENT  
40  
2.5 3.0 3.5 4.0 4.5  
5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
1799 G05  
4
LTC1799  
U
U
U
PI FU CTIO S  
V+ (Pin 1): Voltage Supply (2.7V V+ 5.5V). This supply  
must be kept free from noise and ripple. It should be  
bypasseddirectlytoagroundplanewitha0.1µFcapacitor.  
Floating Pin 4 divides the master oscillator by 10. Pin 4  
should be tied to V+ for the ÷100 setting, the lowest  
frequencyrange. TodetectafloatingDIVpin, theLTC1799  
attempts to pull the pin toward midsupply. This is realized  
with two internal current sources, one tied to V+ and Pin  
4 and the other one tied to ground and Pin 4. Therefore,  
driving the DIV pin high requires sourcing approximately  
5µA. Likewise, driving DIV low requires sinking 5µA.  
When Pin 4 is floated, preferably it should be bypassed by  
a 1nF capacitor to ground or it should be surrounded by a  
ground shield to prevent excessive coupling from other  
PCB traces.  
GND (Pin 2): Ground. Should be tied to a ground plane for  
best performance.  
SET (Pin 3): Frequency-Setting Resistor Input. The value  
of the resistor connected between this pin and V+ deter-  
mines the oscillator frequency. The voltage on this pin is  
held by the LTC1799 to approximately 1.13V below the V+  
voltage. For best performance, use a precision metal film  
resistor with a value between 10k and 200k and limit the  
capacitance on this pin to less than 10pF.  
OUT (Pin 5): Oscillator Output. This pin can drive 5kΩ  
and/or 10pF loads. Larger loads may cause inaccuracies  
due to supply bounce at high frequencies. Transients will  
not cause latchup if the current into/out of the OUT pin is  
limited to 50mA.  
DIV (Pin 4): Divider-Setting Input. This three-state input  
selects among three divider settings, determining the  
value of N in the frequency equation. Pin 4 should be tied  
to GND for the ÷1 setting, the highest frequency range.  
W
BLOCK DIAGRA  
V
= 1.13V ±25%  
RES  
+
+
PROGRAMMABLE  
OUT  
(V – V  
)
V
SET  
1
5
DIVIDER  
(÷1, 10 OR 100)  
+
+
R
SET  
V
GAIN = 1  
MASTER OSCILLATOR  
I
RES  
SET  
DIVIDER  
SELECT  
5µA  
3
2
I
RES  
ƒ
MO  
= 100MHz • k•  
+
+
(V – V  
)
V
SET  
BIAS  
DIV  
THREE-STATE  
INPUT DETECT  
GND  
4
I
RES  
5µA  
GND  
1799 BD  
5
LTC1799  
U
THEORY OF OPERATIO  
As shown in the Block Diagram, the LTC1799’s master  
oscillator is controlled by the ratio of the voltage between  
the V+ and SET pins and the current entering the SET pin  
(IRES). The voltage on the SET pin is forced to approxi-  
mately1.13VbelowV+ bythePMOStransistoranditsgate  
biasvoltage.Thisvoltageisaccurateto±7%ataparticular  
input current and supply voltage (see Figure 1). The  
effective input resistance is approximately 2k.  
OUT(Pin5). Thedivide-byvalueisdeterminedbythestate  
of the DIV input (Pin 4). Tie DIV to GND or drive it below  
0.5V to select÷1. This is the highest frequency range, with  
the master output frequency passed directly to OUT. The  
DIV pin may be floated or driven to midsupply to select  
÷10, the intermediate frequency range. The lowest fre-  
quency range, ÷100, is selected by tying DIV to V+ or  
driving it to within 0.4V of V+. Figure 2 shows the relation-  
ship between RSET, divider setting and output frequency,  
including the overlapping frequency ranges near 100kHz  
and 1MHz.  
A resistor RSET, connected between the V+ and SET pins,  
“locks together” the voltage (V+ – VSET) and current, IRES  
,
variation.ThisprovidestheLTC1799’shighprecision.The  
master oscillation frequency reduces to:  
The CMOS output driver has an on resistance that is  
typicallylessthan100. Inthe ÷1(highfrequency)mode,  
theriseandfalltimesaretypically7nswitha5Vsupplyand  
11ns with a 3V supply. These times maintain a clean  
square wave at 10MHz (20MHz at 5V supply). In the ÷10  
and ÷100 modes, where the output frequency is much  
lower, slew rate control circuitry in the output driver  
increases the rise/fall times to typically 14ns for a 5V  
supply and 19ns for a 3V supply. The reduced slew rate  
lowers EMI (electromagnetic interference) and supply  
bounce.  
10kΩ  
ƒMO = 10MHz •  
RSET  
The LTC1799 is optimized for use with resistors between  
10k and 200k, corresponding to master oscillator fre-  
quencies between 0.5MHz and 10MHz. Accurate frequen-  
cies up to 20MHz (RSET = 5k) are attainable if the supply  
voltage is greater than 4V.  
To extend the output frequency range, the master oscilla-  
tor signal may be divided by 1, 10 or 100 before driving  
1000  
1.4  
T
= 25°C  
A
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
+
V
= 5V  
MOST  
ACCURATE  
OPERATION  
÷100  
÷10  
÷1  
100  
10  
1
+
V
= 3V  
1
10  
100  
1000  
1k  
10k  
100k  
1M  
10M  
100M  
I
(µA)  
DESIRED OUTPUT FREQUENCY (Hz)  
RES  
1799 F02  
1799 F01  
Figure 1. V+ – VSET Variation with IRES  
Figure 2. RSET vs Desired Output Frequency  
6
LTC1799  
W U U  
APPLICATIO S I FOR ATIO  
U
ALTERNATIVE METHODS OF SETTING THE OUTPUT  
FREQUENCY OF THE LTC1799  
SELECTING THE DIVIDER SETTING AND RESISTOR  
The LTC1799’s master oscillator has a frequency range  
spanning 0.1MHz to 33MHz. However, accuracy may  
suffer if the master oscillator is operated at greater than  
10MHz with a supply voltage lower than 4V. A program-  
mable divider extends the frequency range to greater than  
three decades. Table 1 describes the recommended fre-  
quencies for each divider setting. Note that the ranges  
overlap;atsomefrequenciestherearetwodivider/resistor  
combinations that result in the desired frequency.  
The oscillator may be programmed by any method that  
sources a current into the SET pin (Pin 3). The circuit in  
Figure 3 sets the oscillator frequency using a program-  
mable current source and in the expression for fOSC, the  
resistorRSET isreplacedbytheratioof1.13V/ICONTROL.As  
already explained in the “Theory of Operation,” the voltage  
difference between V+ and SET is approximately 1.13V,  
therefore, the Figure 3 circuit is less accurate than if a  
resistor controls the oscillator frequency.  
In general, any given oscillator frequency (fOSC) should be  
obtained using the lowest master oscillator frequency.  
Lower master oscillator frequencies use less power and  
are more accurate. For instance, fOSC = 100kHz can be  
obtained by either RSET = 10k, N = 100, master oscillator  
=10MHzorRSET =100k, N=10, masteroscillator=1MHz.  
The RSET = 100k is preferred for lower power and better  
accuracy.  
Figure 4 shows the LTC1799 configured as a VCO. A  
voltage source is connected in series with an external 10k  
resistor. The output frequency, fOSC, will vary with  
VCONTROL, that is the voltage source connected between  
V+ and the SET pin. Again, this circuit decouples the  
relationship between the input current and the voltage  
between V+ and SET; the frequency accuracy will be  
degraded. The oscillator frequency, however, will mono-  
Table 1. Frequency Range vs Divider Setting  
tonically increase with decreasing VCONTROL  
.
DIVIDER SETTING  
FREQUENCY RANGE  
*
÷1  
DIV (Pin 4) = GND  
>500kHz  
400kHz TO 21MHz  
(APPROXIMATE, SEE TEXT)  
÷10  
DIV (Pin 4) = Floating  
50kHz to 1MHz  
< 100kHz  
+
V
1
2
3
5
+
+
÷100  
*
DIV (Pin 4) = V  
V
OUT  
LTC1799  
0.1µF  
I
At master oscillator frequencies greater than 10MHz (R < 10k), the  
LTC1799 may suffer reduced accuracy with a supply voltage less than 4V.  
CONTROL  
SET  
GND  
SET  
5µA TO 200µA  
4
N = 1  
DIV  
After choosing the proper divider setting, determine the  
correct frequency-setting resistor. Because of the linear  
correspondence between oscillation period and resis-  
tance,asimpleequationrelatesresistancewithfrequency.  
1799 F03  
10MHz 10kΩ  
ƒ
OSC  
• I  
CONTROL  
N
1.13V  
I
EXPRESSED IN (A)  
CONTROL  
Figure 3. Current Controlled Oscillator  
100  
10MHz  
N • fOSC  
RSET = 10k •  
, N = 10  
1
+
V
1
2
3
5
4
+
V
OUT  
LTC1799  
0.1µF  
(RSETMIN = 3k (5V Supply), 5k (3V Supply),  
RSETMAX = 1M)  
V
CONTROL  
+
GND  
SET  
0V TO 1.13V  
R
SET  
10k  
N = 1  
DIV  
Any resistor, RSET, tolerance adds to the inaccuracy of the  
1799 F04  
oscillator, fOSC  
.
V
10MHz 10k  
N
CONTROL  
1.13V  
ƒ
OSC  
1–  
(
)
R
SET  
Figure 4. Voltage Controlled Oscillator  
7
LTC1799  
W U U  
U
APPLICATIO S I FOR ATIO  
POWER SUPPLY REJECTION  
START-UP TIME  
Thestart-uptimeandsettlingtimetowithin1%ofthefinal  
value can be estimated by tSTART RSET(2.8µs/k) +  
20µs. Note the start-up time depends on RSET and it is  
independent from the setting of the divider pin. For in-  
stance with RSET = 50k, the LTC1799 will settle with 1% of  
its 200kHz final value (N = 10) in approximately 160µs.  
Figure 6 shows start-up times for various RSET resistors.  
Low Frequency Supply Rejection (Voltage Coefficient)  
Figure 5 shows the output frequency sensitivity to power  
supply voltage at several different temperatures. The  
LTC1799 has a conservative guaranteed voltage coeffi-  
cient of 0.1%/V but, as Figure 5 shows, the typical supply  
sensitivity is lower.  
Figure 7 shows an application where a second set resistor  
RSET2 is connected in parallel with set resistor RSET1 via  
switch S1. When switch S1 is open, the output frequency  
0.15  
R
= 31.6k  
SET  
PIN 4 = FLOATING (÷10)  
0.10  
0.05  
0
oftheLTC1799dependsonthevalueoftheresistorRSET1  
.
25°C  
When switch S1 is closed, the output frequency of the  
LTC1799 depends on the value of the parallel combination  
–40°C  
85°C  
of RSET1 and RSET2  
.
The start-up time and settling time of the LTC1799 with  
switch S1 open (or closed) is described by tSTART shown  
above.OncetheLTC1799startsandsettles,andswitchS1  
closes(oropens),theLTC1799willsettletoitsnewoutput  
frequency within approximately 25µs.  
–0.05  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
1799 F05  
60  
Figure 5. Supply Sensitivity  
T
= 25°C  
= 5V  
A
+
V
50  
40  
30  
20  
10  
0
High Frequency Power Supply Rejection  
The accuracy of the LTC1799 may be affected when its  
power supply generates significant noise with frequency  
contents in the vicinity of the programmed value of fOSC  
If a switching power supply is used to power up the  
LTC1799,andiftherippleofthepowersupplyismorethan  
afewtensofmillivolts, makesuretheswitchingfrequency  
and its harmonics are not related to the output frequency  
of the LTC1799. Otherwise, the oscillator may show an  
additional 0.1% to 0.2% of frequency error.  
.
200k  
200  
10k  
31.6k  
–10  
400  
600  
0
100  
300  
500  
TIME AFTER POWER APPLIED (µs)  
1799 F06  
Figure 6. Start-Up Time  
IftheLTC1799ispoweredbyaswitchingregulatorandthe  
switching frequency or its harmonics coincide with the  
outputfrequencyoftheLTC1799, thejitteroftheoscillator  
output may be affected. This phenomenon will become  
noticeable if the switching regulator exhibits ripples be-  
yond 30mV.  
3V OR 5V  
10k  
N • R  
1
5
+
f
= 10MHz •  
= 10MHz •  
OSC  
V
OUT  
(
(
)
SET1  
OR  
LTC1799  
S1  
2
3
+
10k  
V
R
SET1  
GND  
SET  
f
OSC  
)
N • R  
//R  
SET1 SET2  
÷100  
÷1  
R
SET2  
4
÷10  
DIV  
1799 F07  
Figure 7  
8
LTC1799  
W U U  
APPLICATIO S I FOR ATIO  
U
Jitter  
(Pin 3) is limited to less than 10pF, as suggested in the Pin  
Functions description. If this requirement is not met, the  
jitter will increase. For more information, contact Linear  
Technology Applications group.  
The typical jitter is listed in the Electrical Characteristics  
and shown in the Typical Performance Characteristics.  
These specifications assume that the capacitance on SET  
U
TYPICAL APPLICATIO S  
Low Power 80Hz to 8kHz Sine Wave Generator (IQ < 4mA)  
3V  
f
OSC  
1
2
5
+
V
OUT  
3V  
LTC1799  
C1  
R
SET  
3V, N = 100  
0.1µF  
GND  
SET  
LTC1067-50  
3V  
SW1  
4
OPEN, N = 10  
3
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
C4  
1µF  
C3  
+
DIV  
V
CLK  
0.1µF  
74HC4520  
CLOCK A  
NC  
AGND  
R62 14k  
÷2  
÷4  
1
2
3
+
R61  
10k  
Q1A  
Q2A  
Q3A  
Q4A  
Q1B  
Q2B  
Q3B  
Q4B  
V
V
3V  
4
R52  
5.11k  
ENABLE A  
SA  
SB  
LPB  
BPB  
R51 5.11k  
R31 51.1k  
÷8  
16  
10  
7
5
SINEWAVE  
OUT  
V
LPA  
BPA  
DD  
R32 51.1k  
÷16  
÷32  
÷64  
÷128  
÷256  
6
C2  
0.1µF  
ENABLE B  
RESET A  
10MHz  
10k  
64R  
f
=
SINE  
11  
12  
13  
14  
R11  
N
SET  
HPA/NA HPB/NB  
INV A INV B  
100k  
R21 20k  
R22 20k  
8
V
SS  
800Hz f  
8kHz, N = 10  
SINE  
800Hz, N = 100  
9
80Hz f  
CLOCK B  
RESET B  
SINE  
R
249k  
H1  
15  
f
OSC  
64  
R
L1  
51.1k  
1799 TA05  
CLOCK-TUNABLE LOWPASS FILTER WITH  
A STOPBAND NOTCH AT THE 3rd HARMONIC  
f
OSC  
64  
• 3  
(
)
9
LTC1799  
U
TYPICAL APPLICATIO S  
3V Digitally Controlled Oscillator with 5kHz to 85kHz Range (N = 100, Pin 4 = V+)  
3V  
LTC1659  
C3  
0.1µF  
1
2
3
4
8
7
6
5
CLK  
V
CC  
CLK  
3V  
D
IN  
V
OUT  
D
IN  
CS/LD  
REF  
CS/LD  
C2  
0.1µF  
D
OUT  
GND  
R5  
10k  
4
3
2
+
1
R6  
10k  
1/4 LT1491  
3V  
R1  
11  
10k  
10  
9
+
5kHz TO 85kHz  
OUT  
R8  
8
R2  
10k  
10k  
1/4 LT1491  
1
2
3
5
4
+
3V  
R
V
OUT  
S
R7  
10k  
C1  
R4  
10k  
10k  
LTC1799  
0.1µF  
C
4096  
f
= 100kHz •  
OSC  
GND  
SET  
5
6
R3  
10k  
+
3V  
1799 TA06  
DIV  
7
1/4 LT1491  
+
(V – V  
)
C
4096  
SET  
I =  
C: DAC CODE 200 C 3480  
10k  
NOTES:  
1. FOR N = 10 (PIN 4 OPEN) THE RANGE IS 50kHz TO 850kHz  
2. FOR N = 1 (PIN 4 = GND) THE RANGE IS 500kHz TO 8.5MHz  
3. DRIVING PIN 4 OF THE LTC1799 WITH A 3-STATE LOGIC DEVICE  
GIVES A RANGE OF 5kHz TO 8.5MHz  
Input Code vs Output Frequency  
(N = 100, Pin 4 = V+)  
100  
75  
50  
25  
0
0
1024  
2048  
3072  
4096  
DAC CODE  
1799 TA07  
10  
LTC1799  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic SOT-23  
(Reference LTC DWG # 05-08-1633)  
(Reference LTC DWG # 05-08-1635)  
2.80 – 3.10  
(.110 – .118)  
(NOTE 3)  
SOT-23  
(Original)  
SOT-23  
(ThinSOT)  
.90 – 1.45  
1.00 MAX  
A
A1  
A2  
L
(.035 – .057)  
(.039 MAX)  
.00 – .15  
(.00 – .006)  
.01 – .10  
(.0004 – .004)  
2.60 – 3.00  
1.50 – 1.75  
(.102 – .118) (.059 – .069)  
(NOTE 3)  
.90 – 1.30  
(.035 – .051)  
.80 – .90  
(.031 – .035)  
.35 – .55  
(.014 – .021)  
.30 – .50 REF  
(.012 – .019 REF)  
PIN ONE  
.95  
(.037)  
REF  
.25 – .50  
(.010 – .020)  
(5PLCS, NOTE 2)  
.20  
(.008)  
A2  
A
DATUM ‘A’  
1.90  
(.074)  
REF  
L
.09 – .20  
(.004 – .008)  
(NOTE 2)  
A1  
S5 SOT-23 0401  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
3. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE INCLUSIVE OF PLATING  
5. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
6. MOLD FLASH SHALL NOT EXCEED .254mm  
7. PACKAGE EIAJ REFERENCE IS:  
SC-74A (EIAJ) FOR ORIGINAL  
JEDEL MO-193 FOR THIN  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1799  
U
TYPICAL APPLICATIO S  
Shutting Down the LTC1799  
5V  
74AC04  
1
+
5
4
ON/SHDN  
OUT  
V
OUT  
C1  
0.1µF  
LTC1799  
R1  
10k  
2
3
GND  
SET  
DIV  
1799 TA08  
Temperature-to-Frequency Converter  
Output Frequency vs Temperature  
1400  
1200  
1000  
800  
600  
400  
200  
0
MAX  
TYP  
MIN  
5V  
1
2
3
5
10MHz 10k  
+
f
=
V
OUT  
OSC  
10  
R
T
C1  
0.1µF  
LTC1799  
R
T
100k  
GND  
SET  
THERMISTOR  
4
DIV  
1799 TA03  
R : YSI 44011 800 765-4974  
T
–20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
1799 TA04  
1799f LT/TP 0801 2K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

LTC1799CS5#PBF

LTC1799 - 1kHz to 33MHz Resistor Set SOT-23 Oscillator; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1799CS5#TR

LTC1799 - 1kHz to 33MHz Resistor Set SOT-23 Oscillator; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1799CS5#TRM

LTC1799 - 1kHz to 33MHz Resistor Set SOT-23 Oscillator; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1799CS5#TRPBF

LTC1799 - 1kHz to 33MHz Resistor Set SOT-23 Oscillator; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1799IS5

1kHz to 30MHz Resistor Set SOT-23 Oscillator
Linear

LTC1799IS5#PBF

LTC1799 - 1kHz to 33MHz Resistor Set SOT-23 Oscillator; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1799IS5#TR

LTC1799 - 1kHz to 33MHz Resistor Set SOT-23 Oscillator; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1799IS5#TRM

LTC1799 - 1kHz to 33MHz Resistor Set SOT-23 Oscillator; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1799IS5#TRMPBF

LTC1799 - 1kHz to 33MHz Resistor Set SOT-23 Oscillator; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1799IS5#TRPBF

LTC1799 - 1kHz to 33MHz Resistor Set SOT-23 Oscillator; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1821

16-Bit, Ultra Precise, Fast Settling VOUT DAC
Linear

LTC1821-1ACGW

16-Bit, Ultra Precise, Fast Settling VOUT DAC
Linear